Assignment III: MTH 213, Fall 2017

Ayman Badawi

QUESTION 1. Let X be number of defective computers. Given : a) X is an divisible by 6, b) $X \equiv 9(\bmod 15)$, and $X \equiv 7(\bmod 11)$. Find X if $330 \leq X \leq 660[$ Note that X is divisible by 3 means $X \equiv 0(\bmod 3)$

We have $X=0(\bmod 6), X=9(\bmod 15), X=7(\bmod 11)$. Since $\operatorname{gcd}(6,15)=3$. We need to get rid of the factor 3 from 15 or 6 . Note that $X=0(\bmod 6)$ implies $X=0(\bmod 3)$. Also X $=9(\bmod 15)$ implies $X=9(\bmod 3)$ and hence implies $X=0(\bmod 3)$. So you may remove the factor 3 from 6 or from 15.
New system: SOLVE $X=0(\bmod 6), X=4(\bmod 5), X=6(\bmod 11)$ [Here we removed 3 from 15 , Since $9 \bmod 5=4, X=9(\bmod 5)$ is the same as $X=4(\bmod 5)$.
OR Solve $X=0(\bmod 2), X=9(\bmod 15), X=6(\bmod 11)[$ Here we removed 3 from 6] Either one should give you the same solution : $204+330=534$.

QUESTION 2. (i) Add $(7 A C 43)_{16}+(29 B)_{16}$
(ii) Subtract $(7854)_{9}-(1428)_{9}$
(iii) multiply $(234)_{5} \cdot(42)_{5}$
(iv) multiply $(A 6 B)_{16} \cdot(9 A)_{16}$

QUESTION 3. Solve over $Z: x \equiv 7(\bmod 8), x \equiv 1(\bmod 6)$, and $x \equiv 4(\bmod$ the number here is 5

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

See comments on Question one: $\operatorname{gcd}(8,6)=2$. So we need to get rid of the factor 2 from 6 or 8 . Note $x=7(\bmod 8)$ implies $x=7(\bmod 2)$ implies $x=1$ $(\bmod 2)$ [Since $7 \bmod 2$ is 1]. Now $x=1(\bmod 6)$ implies $x=1(\bmod 2)$.
So SOLVE $x=7(\bmod 8), x=1(\bmod 3), x=4(\bmod 5)$ [Here we removed the factor 2 from 6]
NOW if we remove the factor 2 from 8 , we have $x=3(\bmod 4), x=1(\bmod$ $6), x=4(\bmod 5)$ and we cannot use the CRT. So we must stick with the first option. Solution $79+120 n$, where n any integer.

